Problem 1. (1 point) METUNCC/Applied_Math/fourier/Omega.pg
In your answers below you may use sqrt (), but no trig functions, complex multiplication, or powers.
(A) Write the primitive $12^{\text {th }}$ root of unity in the counter-clockwise and clockwise directions.
$\omega_{12}=$ \qquad
$\overline{\omega_{12}}=$ \qquad
(B) Write the following roots of unity in the form $a+b i$.
$\omega_{12}^{6}=$ \qquad
$\omega_{12}^{22}=$ \qquad
$\omega_{12}^{44}=$ \qquad
$\omega_{12}^{-2}=$ \qquad

Problem 2. (1 point) METUNCC/Applied_Math/fourier/Disc_Fourier.pg
In your answers below you may use sqrt (), but no trig functions, complex multiplication, or powers.
(A) Compute the discrete Fourier transform of $\overrightarrow{\mathbf{f}}=(4,-4,0,2)$.
$\mathcal{F}\{\overrightarrow{\mathbf{f}}\}=(\longrightarrow$, \longrightarrow, \longrightarrow, -
(B) Compute the discrete Fourier transform of $\overrightarrow{\mathbf{g}}=(1,0,2)$.
$\mathcal{F}\{\overrightarrow{\mathbf{g}}\}=(\square, \square)$

Problem 3. (1 point) METUNCC/Applied_Math/fourier/Disc_InvFour.pg
In your answers below you may use sqrt (), but no trig functions, complex multiplication, or powers.
(A) Compute the discrete inverse Fourier transform of $\overrightarrow{\mathbf{c}}=\left(\frac{13}{4}, \frac{-2+3 i}{4}, \frac{3}{4}, \frac{-2-3 i}{4}\right)$.
$\mathcal{F}^{-1}\{\overrightarrow{\mathbf{c}}\}=(\square, \longrightarrow, \longrightarrow)$
(B) Compute the discrete inverse Fourier transform of $\overrightarrow{\mathbf{d}}=\left(\frac{5}{3}, \frac{7-5 \sqrt{3} i}{6}, \frac{7+5 \sqrt{3} i}{6}\right)$. $\mathcal{F}^{-1}\{\overrightarrow{\mathbf{d}}\}=(\square, \longrightarrow)$

Problem 4. (1 point) METUNCC/Applied_Math/fourier/Disc_Fourier_f.pg
In the parts below your answer must be entered using sqrt ().
(Use of $\sin ()$ and $\cos ()$ is disabled.)
(A) Compute the discrete Fourier transform of $f=t+2$ on $[0,3)$ with length 4 .
$\mathcal{F}\{\overrightarrow{\mathbf{f}}\}=(\square, \longrightarrow)$
(B) Compute the discrete Fourier transform of $g=2 t+2$ on $[1,4)$ with length 3 .
$\mathcal{F}\{\overrightarrow{\mathbf{g}}\}=(\square, \square)$

